CBCS SCHEME

USN												15CS651
-----	--	--	--	--	--	--	--	--	--	--	--	---------

Sixth Semester B.E. Degree Examination, Aug./Sept.2020 Data Mining and Data Warehousing

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. What is a Data Warehouse? Discuss various usage and trends in data warehousing.

(08 Marks)

b. Explain in detail the three – tier Data warehouse architecture.

(08 Marks)

OR

- 2 a. Discuss the concept of star, snowflake and galaxy schemas for multidimensional databases.
 (08 Marks)
 - b. Summarize the various OLAP operations in the multidimensional data model.

(08 Marks)

Module-2

- 3 a. Identify the different indexing method used for OLAP data with brief explanation. (08 Marks)
 - b. Differentiate ROLAP, MOLAP and HOLAP servers.

(08 Mark

OR

- 4 a. What is Data Mining? Explain various data mining tasks, with suitable examples. (08 Marks)
 - Explain different steps involved in preprocessing steps. Write any 3 challenges faced in Data Mining.
 (08 Marks)

Module-3

- 5 a. What is Apriori Algorithm? How it is used to find frequent item sets? Explain. (08 Marks)
 - b. Illustrate the advantages of using closed frequent itemsets, with an example. Show the relationships among frequent, maximal frequent and closed frequent itemsets. (08 Marks)

OR

6 a. Explain FP – growth algorithm for discovering frequent itemsets.

(08 Marks)

b. Briefly explain the Objective Measures of Interestingness for evaluating association patterns.
(08 Marks)

Module-4

7 a. Define Classification. With a neat figure, explain the general approach for solving classification model. (08 Marks)

b. Consider the following data set for a binary.

			40	
Instance	a ₁	a ₂	a ₃	Target class
1	T	T	1.0	+
2	T	Т	6.0	+
3	T	F	5.0	-
4	F	F	4.0	+
5	F	Т	7.0	- 4
6	F	T	3.0	- 😾
7	F	F	8.0	- 4
- 8	T	F	7.0	
9	F	T	5.0	A.7

Classification problem

i) What is the entropy of this collection of training examples, with respect to the positive class?

ii) What are the information gains of a₁ and a₂ relative to these training examples?

iii) For a₃, which is a continuous attribute, compute the information gain for every possible split. (08 Marks)

OR

8 a. What is a rule – based classifier? Explain sequential covering algorithm in rule – based classifier. (08 Marks)

b. Write an algorithm for K – Nearest Neighbor (KNN) classification. List the characteristics of Nearest Neighbor classifiers. (08 Marks)

Module-5

9 a. What is Cluster analysis? Discuss the different types of clusters with examples. (08 Marks)

b. Describe K - means clustering algorithm. What are its limitations?

(08 Marks)

OR

10 a. Discuss DBSCAN algorithm for clustering.

(08 Marks)

b. Explain Agglomerative Hierarchical Clustering Algorithm, with different proximity between clusters. (08 Marks)